博客
关于我
10行Python代码搞定目标检测
阅读量:798 次
发布时间:2023-04-17

本文共 814 字,大约阅读时间需要 2 分钟。

与其他类似方案相比,使用ImageAI的目标检测功能能够更高效地完成图像分析任务。以下是基于RetinaNet模型的实现步骤:

1. 模型准备

首先,我们需要准备一个RetinaNet模型文件,将其放置在项目根目录下:

resnet50_coco_best_v2.0.1.h5

2. 初始化检测器

通过ImageAI的API初始化目标检测器,并设置模型类型为RetinaNet:

from imageai.Detection import ObjectDetectiondetector = ObjectDetection()detector.setModelTypeAsRetinaNet()

3. 加载模型

将训练好的RetinaNet模型加载到环境中:

detector.setModelPath(os.path.join(os.getcwd(), "resnet50_coco_best_v2.0.1.h5"))detector.loadModel()

4. 图像检测

接下来,通过提供图像文件路径进行目标检测,并生成新的检测图像:

detections = detector.detectObjectsFromImage(input_image=os.path.join(os.getcwd(), "image.jpg"), output_image_path=os.path.join(os.getcwd(), "imagenew.jpg"))

5. 检视结果

对返回的检测结果进行遍历,查看每个目标的名称及其置信度:

for eachObject in detections:    print(eachObject["name"] + " : " + eachObject["percentage_probability"])

这种实现方式通过简单的代码完成了目标检测的基本功能,适用于对图像进行初步分析的场景。

转载地址:http://cpgfk.baihongyu.com/

你可能感兴趣的文章
mysql加入安装策略_一键安装mysql5.7及密码策略修改方法
查看>>
mysql加强(1)~用户权限介绍、分别使用客户端工具和命令来创建用户和分配权限
查看>>
mysql加强(3)~分组(统计)查询
查看>>
mysql加强(4)~多表查询:笛卡尔积、消除笛卡尔积操作(等值、非等值连接),内连接(隐式连接、显示连接)、外连接、自连接
查看>>
mysql加强(5)~DML 增删改操作和 DQL 查询操作
查看>>
mysql加强(6)~子查询简单介绍、子查询分类
查看>>
mysql加强(7)~事务、事务并发、解决事务并发的方法
查看>>
MySQL千万级多表关联SQL语句调优
查看>>
mysql千万级大数据SQL查询优化
查看>>
MySQL千万级大表优化策略
查看>>
MySQL单实例或多实例启动脚本
查看>>
MySQL压缩包方式安装,傻瓜式教学
查看>>
MySQL原理、设计与应用全面解析
查看>>
MySQL原理简介—1.SQL的执行流程
查看>>
MySQL参数调优详解
查看>>
mysql参考触发条件_MySQL 5.0-触发器(参考)_mysql
查看>>
MySQL及navicat for mysql中文乱码
查看>>
MySqL双机热备份(二)--MysqL主-主复制实现
查看>>
MySQL各个版本区别及问题总结
查看>>
MySql各种查询
查看>>