博客
关于我
10行Python代码搞定目标检测
阅读量:798 次
发布时间:2023-04-17

本文共 814 字,大约阅读时间需要 2 分钟。

与其他类似方案相比,使用ImageAI的目标检测功能能够更高效地完成图像分析任务。以下是基于RetinaNet模型的实现步骤:

1. 模型准备

首先,我们需要准备一个RetinaNet模型文件,将其放置在项目根目录下:

resnet50_coco_best_v2.0.1.h5

2. 初始化检测器

通过ImageAI的API初始化目标检测器,并设置模型类型为RetinaNet:

from imageai.Detection import ObjectDetectiondetector = ObjectDetection()detector.setModelTypeAsRetinaNet()

3. 加载模型

将训练好的RetinaNet模型加载到环境中:

detector.setModelPath(os.path.join(os.getcwd(), "resnet50_coco_best_v2.0.1.h5"))detector.loadModel()

4. 图像检测

接下来,通过提供图像文件路径进行目标检测,并生成新的检测图像:

detections = detector.detectObjectsFromImage(input_image=os.path.join(os.getcwd(), "image.jpg"), output_image_path=os.path.join(os.getcwd(), "imagenew.jpg"))

5. 检视结果

对返回的检测结果进行遍历,查看每个目标的名称及其置信度:

for eachObject in detections:    print(eachObject["name"] + " : " + eachObject["percentage_probability"])

这种实现方式通过简单的代码完成了目标检测的基本功能,适用于对图像进行初步分析的场景。

转载地址:http://cpgfk.baihongyu.com/

你可能感兴趣的文章
myeclipse的新建severlet不见解决方法
查看>>
MyEclipse设置当前行背景颜色、选中单词前景色、背景色
查看>>
MyEclipse配置SVN
查看>>
MTCNN 人脸检测
查看>>
MyEcplise中SpringBoot怎样定制启动banner?
查看>>
MyPython
查看>>
MTD技术介绍
查看>>
MySQL
查看>>
MySQL
查看>>
mysql
查看>>
MTK Android 如何获取系统权限
查看>>
MySQL - 4种基本索引、聚簇索引和非聚索引、索引失效情况、SQL 优化
查看>>
MySQL - ERROR 1406
查看>>
mysql - 视图
查看>>
MySQL - 解读MySQL事务与锁机制
查看>>
mysql 1264_关于mysql 出现 1264 Out of range value for column 错误的解决办法
查看>>
mysql 1593_Linux高可用(HA)之MySQL主从复制中出现1593错误码的低级错误
查看>>
mysql ansi nulls_SET ANSI_NULLS ON SET QUOTED_IDENTIFIER ON 什么意思
查看>>
MySQL Binlog 日志监听与 Spring 集成实战
查看>>
multi-angle cosine and sines
查看>>