博客
关于我
10行Python代码搞定目标检测
阅读量:798 次
发布时间:2023-04-17

本文共 814 字,大约阅读时间需要 2 分钟。

与其他类似方案相比,使用ImageAI的目标检测功能能够更高效地完成图像分析任务。以下是基于RetinaNet模型的实现步骤:

1. 模型准备

首先,我们需要准备一个RetinaNet模型文件,将其放置在项目根目录下:

resnet50_coco_best_v2.0.1.h5

2. 初始化检测器

通过ImageAI的API初始化目标检测器,并设置模型类型为RetinaNet:

from imageai.Detection import ObjectDetectiondetector = ObjectDetection()detector.setModelTypeAsRetinaNet()

3. 加载模型

将训练好的RetinaNet模型加载到环境中:

detector.setModelPath(os.path.join(os.getcwd(), "resnet50_coco_best_v2.0.1.h5"))detector.loadModel()

4. 图像检测

接下来,通过提供图像文件路径进行目标检测,并生成新的检测图像:

detections = detector.detectObjectsFromImage(input_image=os.path.join(os.getcwd(), "image.jpg"), output_image_path=os.path.join(os.getcwd(), "imagenew.jpg"))

5. 检视结果

对返回的检测结果进行遍历,查看每个目标的名称及其置信度:

for eachObject in detections:    print(eachObject["name"] + " : " + eachObject["percentage_probability"])

这种实现方式通过简单的代码完成了目标检测的基本功能,适用于对图像进行初步分析的场景。

转载地址:http://cpgfk.baihongyu.com/

你可能感兴趣的文章
mysql常用命令
查看>>
MySQL常用指令集
查看>>
mysql常用操作
查看>>
MySQL常用日期格式转换函数、字符串函数、聚合函数详
查看>>
MySQL常见架构的应用
查看>>
MySQL常见约束条件
查看>>
MySQL常见错误
查看>>
MySQL常见错误分析与解决方法总结
查看>>
mysql并发死锁案例
查看>>
MySQL底层概述—1.InnoDB内存结构
查看>>
MySQL底层概述—2.InnoDB磁盘结构
查看>>
MySQL底层概述—3.InnoDB线程模型
查看>>
MySQL底层概述—4.InnoDB数据文件
查看>>
MySQL底层概述—5.InnoDB参数优化
查看>>
MySQL底层概述—6.索引原理
查看>>
MySQL底层概述—7.优化原则及慢查询
查看>>
MySQL底层概述—8.JOIN排序索引优化
查看>>
MySQL底层概述—9.ACID与事务
查看>>
Mysql建立中英文全文索引(mysql5.7以上)
查看>>
mysql建立索引的几大原则
查看>>